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Abstract 

This study addresses the demand for more efficient streetlight designs in rural areas by introducing an improved genetic 

algorithm (GA) to optimize the geometry and placement of streetlight poles. Conventional GAs frequently suffer from 

premature convergence and becoming trapped in local optima, reducing their effectiveness. To mitigate these issues, this 

research integrates the genetic algorithm with Sequential Quadratic Programming (SQP), using the quasi-optimal solution 

generated by the GA as the initial input for the SQP, enhancing both accuracy and stability. The methodology includes 

developing a geometric model of streetlight poles utilizing point cloud data and extracting the centerline via the optimized 

GA-SQP approach. Additionally, the study examines the effects of random errors, gross errors, incomplete point cloud data, 

and centerline deviations on the algorithm's performance. 
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1. Introduction 

In recent years, street lights, as the mainstay of urban 

lighting, have undergone rapid development, and technolog-

ical upgrades have made them more intelligent, convenient, 

and environmentally friendly. However, the traditional 

lighting industry still faces numerous issues, such as exces-

sive and disorderly placement of light poles, occupying ex-

cessive land resources, low energy efficiency, and safety 

hazard [1, 2]. 

As a result, intelligent streetlights have emerged as a solu-

tion, and excellent intelligent streetlight design can bring 

some significant environmental benefits. 

Genetic algorithm is a heuristic algorithm [3] that can 

simulate biological evolution and is widely used in optimiza-

tion, scheduling, and transportation due to its practicality and 

robustness. However, it suffers from certain issues such as 

premature convergence and a local optimal solution [4-7]. 

To address these issues, researchers have proposed various 

improved genetic algorithms in recent years, combining ge-
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netic algorithms with some sequential quadratic program-

ming algorithms [8, 9]. These hybrid genetic algorithms have 

been widely used in optimization problems [10-12], such as 

footstep detection [13], online performance optimization [14], 

and computational chemistry [15, 16], and have achieved 

good results. The research results show that the improved 

genetic algorithm can significantly improve computational 

efficiency and obtain satisfactory optimization results. 

The improved genetic algorithm is based on the strong 

search capability of the genetic algorithm in the solution space. 

It employs the "quasi-optimal solution" obtained by the genet-

ic algorithm to serve as the initial solution for the sequential 

quadratic programming algorithm, iteratively searching for the 

global optimal solution or a close approximation. 

For the above problem, this paper proposes an improved 

genetic algorithm to obtain a more energy-efficient, envi-

ronmentally friendly, and convenient intelligent streetlamp 

design. Based on the point cloud characteristics of the lamp 

post, the model of the centerline is obtained, and the genetic 

algorithm is used to extract the centerline of the lamp post. 

The extraction of the centerline here is mainly based on the 

central coordinates of the upper and lower surfaces of the 

lamp post to generate the centerline, considering random 

errors, gross errors, and observed centerlines, and combining 

actual conditions to obtain a complete algorithmic process 

for designing rural streetlamps. Additionally, using the point 

cloud features of the lamp post, a centerline model is estab-

lished through statistical data. An improved mixed genetic 

algorithm is proposed by using the sequential quadratic pro-

gramming algorithm to improve the genetic algorithm. The 

genetic algorithm scheme is established by extracting the 

centerline of the lamp post, considering the relationship be-

tween random errors, gross errors, observed centerlines, and 

the algorithm, and through experimental results, the superi-

ority of the improved genetic algorithm is demonstrated. 

2. Model and Algorithm Implementation 

2.1. Model and Algorithm for Street Light 

Centerline Extraction 

Point cloud data is typically obtained with 3D imaging sen-

sors such as stereo cameras, 3D scanners, and RGB-D cameras. 

Popular devices for capturing point cloud data include RGB-D 

cameras, Intel's RealSense, and the Structure Sensor. Point 

cloud data can be created by scanning the intrinsic parameters 

of the scanning camera or by scanning images obtained from 

an RGB-D camera. Additionally, LiDAR laser detection ex-

periments can be used to obtain point cloud data, primarily 

through satellite, airborne, and ground-based methods. 

In this paper, the point cloud data collection method in-

volves extracting the required point cloud data by establish-

ing a geometric model like that of a streetlamp. This ap-

proach can obtain the necessary point cloud data without 

relying on external sensors or equipment. 

The coordinates of the center point of the lower surface of 

the specified streetlamp are (  ,      ), with a radius of   , 

and the coordinates of the center point of the upper surface 

are (  ,      ), with a radius of   . The designed parameter 

solution is (  ,                      ).    and    can be 

determined by the minimum and maximum z-coordinates in 

the surface point cloud data. 

The fitness function is represented by the central axis 

equation of the truncated cone and streetlamp model deter-

mined by the parameter solution (                        , 

as well as the sum of squared fitting residuals of the ob-

served point cloud data. 

𝑄 = ∑ ( 𝑝 − 𝑑𝑝)
 

𝑛

𝑝= 
= 𝑚𝑖𝑛         (1) 

𝑀:
𝑥−𝑥1

𝑥2−𝑥1
=

𝑦−𝑥1

𝑦2−𝑦1
=

𝑧−𝑧1

𝑧2−𝑧1
           (2) 

In equation (1),   represents the radius of the truncated 

cone corresponding to point  , in millimeters. 𝑑 represents 

the distance between point   and the central axis of the 

truncated cone, in millimeters. Q represents the sum of 

squared fitting residuals. M represents the central axis equa-

tion of the truncated cone model. 

The experimental procedure is as follows: 

1) Solve for the parameter solution 

(                         ) of the two-point spatial line 

equation (central axis equation of the truncated cone 

model) 

2) Compute the distance 𝑑 between point   on the sur-

face of the truncated cone and its central axis. 

3) Interpolate the radius of the truncated cone corre-

sponding to point   using the upper and lower radii 

(   and   ) of the truncated cone. 

4) For all surface point cloud data, repeat steps 2-3 and 

accumulate the fitting residuals using equation (1). 

5) Use a genetic algorithm to iteratively search for a pa-

rameter solution (   
    

    
    

    
    

    
    

 ) that 

minimizes the sum of squared fitting residuals Q. 

6) Use the result from step 5 as the initial value for a se-

cond-order sequence optimization to further optimize 

the parameter solution. 

By utilizing the algorithm, we obtain the optimal centers 

of the upper and lower surfaces of the truncated cone, and 

then complete the calculation of the spatial line equation 

using the two-point formula. To assess the effectiveness of 

the improved genetic algorithm, we introduce a numerical 

indicator, the positional mean error, to measure point posi-

tioning accuracy. In the present context, the positional mean 

error can be calculated using the following formula: 

𝑀 = ±√∑ 𝛥𝑖
2

𝑛

𝑖=1

 𝑛

                (3) 
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where ∑   
 𝑛

 = 
 represents the objective function, and 2𝑛 

represents point cloud quantity. 

2.2. Methodology and Algorithms 

Individual encoding: The initial population is generated 

randomly based on the parameter range. According to exten-

sive parameter optimization experience, the chromosome gene 

dimension is set to 6. In this case, the chromosome genes are 

represented as (  
    

    
    

    
    

 ). The genetic algorithm 

encoding method is real-number encoding, which has the ad-

vantages of wide applicability and high precision. The maxi-

mum number of genetic generations is denoted as s, the 

crossover probability as p, and the mutation probability as q. 

Selection of the initial population: Genetic algorithms in-

volve a series of evolutionary operations on populations, so it 

is necessary to prepare a certain amount of initial population 

data, denoted as N. Individuals in the population can be gen-

erated randomly. 

crossover and mutation: crossover is performed according 

to an elitist scheme, and mutation is carried out using a rou-

lette wheel method, after the initial population is generated 

and individual fitness is calculated. Fitness is represented by 

the sum of squared fitting residuals Q observed from the 

point cloud data. The mutated offspring population is merged 

with the parent population, sorted based on their fitness val-

ues, and the top N individuals are selected as the new popu-

lation for the next generation of genetic operations. 

In the selection and crossover operations, we utilize an elitist 

ranking scheme known as the "monarch" method, which is 

characterized by its faster convergence speed. Although genetic 

algorithms cannot guarantee that every individual in the off-

spring is better than every individual in the parent population, 

they can guarantee that the best individual in the offspring is 

better than all individuals in the parent population. The roulette 

wheel method is used to select individuals for mutation based on 

their fitness values relative to the total fitness of the population 

[17]. The combination of the roulette wheel method and the 

monarch scheme plays an important role in improving the glob-

al convergence of genetic algorithms. 

Sequential Quadratic Programming (SQP) is an algorithm 

that transforms complex nonlinear optimization problems 

into simpler quadratic programming problems. The basic 

idea is to simplify the objective function of the nonlinear 

optimization problem at the iteration point into a quadratic 

function using a Taylor expansion, while simplifying the 

constraint function that can be expressed as linear equations 

or inequalities into a linear function. 

Considering the nonlinear constrained optimization prob-

lem: 

min 𝑓(   (s. t. ℎ (  = 0 𝑖 ∈ 𝐸 = {1 2 3 …  𝑙}.)    (4) 

where 𝑓:  𝑛    ℎ :  
𝑛   (𝑖 ∈ 𝐸  are twice continuous-

ly differentiable real functions. Then get the Lagrangian 

function of problem (4) 

𝐿(  𝜇 = 𝑓(  − ∑ 𝜇 ℎ (  
𝑙
 = = 𝑓(  − 𝜇𝑇ℎ(    (5) 

where 𝜇 = (𝜇  …  𝜇𝑙 
𝑇  ℎ(  = (ℎ (   …  ℎ𝑙(  )

𝑇
, and the 

gradient of the constraint function ℎ(  : 

𝛻ℎ(  = [𝛻ℎ (   …  𝛻ℎ𝑙(  ], 

then the Jacobian matrix of ℎ(   is  (  = 𝛻ℎ(  𝑇 . 

Combining with the Karush-Kuhn-Tucker (KKT) condi-

tions [18]
 
of problem (4 , we can obtain: 

𝛻𝐿(  𝜇 = [
𝛻𝑥𝐿(  𝜇 

𝛻𝑥𝐿(  𝜇 
] = [

𝛻𝑓(  −  (  𝑇𝜇

−ℎ(  
] = 0. (6) 

Using the Newton method to solve the nonlinear equation 

system formula (6), it can be transformed into a strictly con-

vex quadratic programming problem (7): 

𝑚𝑖𝑛 𝑞 (𝑑 =
 

 
𝑑𝑇𝐵(   𝜇  𝑑 + 𝛻𝑓(   

𝑇𝑑 (s. t. ℎ(   +

 (   𝑑 = 0          (7) 

where 𝐵(   𝜇   is a positive definite 𝑛  𝑛  matrix. 

 (    is a full-rank 𝑙  𝑛  matrix, and 𝑑  is the global 

minimum point. Meanwhile, the penalty function is defined: 

 (  𝜇 = ‖𝛻𝐿(  𝜇 ‖ = ‖𝛻𝑓(  − (  𝑇𝜇‖ + ‖ℎ(  ‖  (8) 

𝛻 (   𝜇  
𝑇  = −2 (   𝜇  ≤ 0        (9) 

The specific algorithm steps are as follows: 

Step 1: Choose   ∈  𝑛  𝜇 ∈  𝑙     ∈ (0 1 . Set 

 = 0  n  0 ≤    1. 

Step 2: Calculate the value of  (   𝜇  . If  (   𝜇  ≤  , 

stop. Otherwise, proceed to Step3. 

Step 3: Solve the quadratic programming subproblem to 

obtain 𝑑  and 𝜇̅ , and let   =𝜇̅ -𝜇 -
 

  
 (   𝑑 . 

Step 4: If  (  + 𝑑  𝜇 +    ≤ (1 −    (   𝜇  , set 

  = 1 and go to Step 6. Otherwise, proceed to Step 5. 

Step 5: Let 𝑚  be the smallest non-negative integer that 

satisfies the inequality: 

 (  +  𝑚𝑑  𝜇 +  𝑚   ≤ (1 −   𝑚  (   𝜇   set 

  =  𝑚𝑘                  (10) 

Step 6: Let     =   +   𝑑  𝜇   = 𝜇 +     ,  = +1, 

and go back to Step 1. 

2.3. Introduction to Data Perturbations 

Point cloud data with random errors 

It is not difficult to find that many things are accompanied 

by random errors. In the measurement process, errors with 
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mutually offsetting characteristics are often formed due to a 

series of related small factors. For this experiment, the same 

situation exists, so it is necessary to process the point cloud 

data collected. Currently, there are several methods to gener-

ate random numbers in MATLAB, including: 

1) randi(): to produce uniformly distributed random inte-

gers; 

2) rand(): to produce uniformly distributed random num-

bers; 

3) unifrnd(): to produce continuously uniform random 

numbers; 

4) unidrnd (): to produce discrete uniform random num-

bers. 

Considering the specific situation of this experiment, 

rand() can produce pseudo-random numbers with a uniform 

distribution, which is more suitable for the current data needs. 

The point cloud data generated by using the pseudo-random 

numbers generated by the rand function are perturbed with 

random errors of 1mm, 3mm, and 5mm, respectively, in the 

X and Y coordinates. The stability and accuracy of the re-

sults are observed by running the experiment multiple times, 

and the impact of random errors is analyzed. 

Outlier point cloud data 

During data collection, observers may inadvertently in-

troduce gross errors, which are erroneous results or 

out-of-range errors caused by observer negligence, such as 

sighting errors, reading errors, and recording errors. The 

presence of gross errors can greatly affect the reliability of 

adjustment results, and even lead to completely wrong re-

sults. If incorrect data is collected, it will have a significant 

impact on the experimental results. 

Half-space point cloud data 

In practical situations, it is common to encounter scenarios 

where only a portion of the data is collected due to environ-

mental factors or personal reasons, such as when using in-

struments to collect data on terrain and landforms. In such 

cases, it is necessary to understand the impact of the incom-

plete data on the experiment. 

To study the impact of incomplete data, one approach is to 

use the half-space point cloud. For example, in the case of a 

streetlamp, the Y-axis of half of the point cloud data can be 

used to calculate the center. The resulting error can be ana-

lyzed to evaluate the impact of incomplete data on the algo-

rithm, as well as to assess the effectiveness of the algorithm's 

error-correction capabilities. 

Centerline offset 

In practical situations, when collecting data on objects 

such as poles, the centerline of the pole may not always be 

aligned with the observer's line of sight. This can occur due 

to environmental factors, such as uneven terrain or obstruc-

tions, or human factors, such as the observer's position or 

orientation. As a result, the collected point cloud data of the 

frustum may be affected by the offset centerline. This can 

lead to inaccuracies in the reconstruction or modeling of the 

object and can affect the performance of algorithms used to 

analyze or manipulate the point cloud data. 

When the centerline is offset, the observed centerline is 

not aligned with the observer's line of sight, meaning that the 

observed centerline and the centerline of the pole are not 

aligned. To study the impact of this situation on the experi-

ment, we can make the following assumption: by changing 

the center coordinates, we can offset the X-axis of the cen-

terline of the pole by 150 units. We can then use an im-

proved genetic algorithm to determine whether a good fit can 

be obtained with the resulting centerline. The impact of the 

offset centerline on the algorithm can then be evaluated. 

To evaluate the impact of the offset centerline, the width of 

the field of view can be set to ten times that of the pole, and 

the centerline observed at a non-central position can be used to 

collect point cloud data. Genetic algorithms and improved 

genetic algorithms can be compared to evaluate the impact of 

the offset centerline on the performance of the algorithm. 

3. Genetic Algorithm and Improved 

Genetic Algorithm Simulation 

3.1. Definition of Symbols 

Table 1. Symbol explanation for simulation experiment. 

X1: 
The coordinate on the X-axis of the bottom surface of a 

frustum 

Y1: 
The coordinate on the Y-axis of the bottom surface of a 

frustum 

R1: The radius of the bottom surface of a frustum 

X2: 
The coordinate on the X-axis of the top surface of a frus-

tum 

Y2: 
The coordinate on the Y-axis of the top surface of a frus-

tum 

R2: The radius of the top surface of a frustum 

K: The number of iterations of an improved genetic algorithm 

VAL: The accuracy of an improved genetic algorithm 

ANS: Positional mean error 

Q: Random error introduced in experiments 

W: Proportion of gross errors introduced in experiments 

3.2. Construction of Geometric Model 

The main task in extracting the centerline of streetlamps is 

to extract the centerline equation based on point cloud data. 

Point cloud refers to a collection of points, and compared to 

images, point cloud has an irreplaceable advantage - deep 3D 

point cloud can directly provide 3D spatial data, while imag-

es require perspective geometry to infer 3D data. Point 
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clouds can be divided into two types based on their composi-

tion characteristics: ordered point clouds and unordered point 

clouds. 

To extract the centerline of streetlamps, a set of center co-

ordinates and radii for the upper and lower surfaces of a 

frustum need to be constructed to closely match the actual 

surface point cloud frustum. 

 
Figure 1. Bottom cross-sectional point cloud diagram. 

 
Figure 2. Surface point cloud illustration of frustum. 

Specifically, the center coordinate of the bottom surface is 

(0, 0, 0), with a radius of 100mm; the center coordinate of 

the top surface is (0, 0, 1000), with a radius of 50mm. In the 

Z direction, a section is set every 10mm, and a total of 101 

sections are set. In each section, two coordinate points are 

generated every 5mm in the X direction, as shown in Figure 

1. The surface point cloud of the frustum is generated using 

the spatial equation of the frustum combined with MATLAB, 

as shown in Figure 2. Based on these point cloud data, a spe-

cific algorithm or method can be used to extract the center-

line equation of the frustum for the purpose of extracting the 

centerline of streetlamps. 

3.3. Experimental Results 

Simulation results of the algorithm's effectiveness and sta-

bility: 

In this example, the maximum genetic generation number 

s is set to 100, crossover probability p is set to 0.8, mutation 

probability q is set to 0.1, and the initial population size N is 

set to 100. The XY coordinates are confined to a square area 

with sides of length 2000 units, centered at the origin of the 

two-dimensional plane, while the radius R is within the range 

of (0, 200). A total of 100 initial population individuals are 

randomly generated. 

Due to the high computational complexity of the objective 

function in sequential quadratic programming when used in 

the genetic algorithm, a "roulette wheel" selection method is 

used to randomly select 100 points from the point cloud data 

to form the objective function for the sequential quadratic 

programming algorithm. Additionally, to facilitate the pro-

gram's calculations, an inequality constraint R1 > R2 is added. 

From Table 2, the optimal solution 

(                       ) obtained by the genetic algorithm 

differs from the input value in the experiment (0, 0, 0, 0, 0, 

1000, 100, 50), and the selected optimal solution is not 

unique, with results exhibiting fluctuations. The reason for 

this is that in the experiment, the initial population of the 

genetic algorithm is established using randomly generated 

point cloud data, which has random characteristics within a 

certain range. This leads to different results in the optimal 

solution obtained through the genetic algorithm, reflecting 

the limitations of the genetic algorithm. 

Table 2. Simulation results of genetic algorithm experiment. 

 X1 Y1 R1 X2 Y2 R2 

Input values 0.0000 0.0000 100.0000 0.0000 0.0000 50.0000 

Simulation results 

5.2147 0.0366 99.0285 -4.8141 1.8253 50.5692 

0.0887 -4.0183 100.0362 4.1909 -3.9940 50.4307 

0.7458 4.4898 100.1389 -2.3314 -3.2689 49.7842 
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As shown in Table 3, the improved genetic algorithm using sequential quadratic programming obtains an optimal solution 

that is consistent with the input value in the experiment. Compared with the genetic algorithm, the improved genetic algorithm 

has superior performance and achieves better fitting results. 

Table 3. Simulation result of improved genetic algorithm experiment. 

 X1 Y1 R1 X2 Y2 R2 

Input values 0.0000 0.0000 100.0000 0.0000 0.0000 50.0000 

Simulation result -0.0000 -0.0000 100.0000 0.0000 0.0000 50.0000 

 

Table 4. Accuracy of improved genetic algorithm. 

K VAL ANS 

11 1.7983e-16 8.6875e-10 

 
Figure 3. Centerline fitting of top and bottom circles of two algo-

rithms. 

From Table 3 and Table 4, the improved genetic algorithm 

obtains a highly accurate final solution, and the point mean 

error in the experiment also shows that the improved genetic 

algorithm has superior performance and high fitting accuracy. 

In conclusion, if only genetic algorithm is used, the results 

obtained will exhibit fluctuations and will not be unique. 

However, if the genetic algorithm is improved by adding 

sequential quadratic programming, the resulting algorithm 

will have stability and can suppress the fluctuations of the 

genetic algorithm. This leads to more stable results and 

higher precision. Figure 3 and Figure 4 clearly demonstrate 

the effectiveness of the improved algorithm. 

 
Figure 4. Centerline fitting results of two algorithms. 

Simulation results of the algorithm under random error 

As shown in Table 5 and Table 6, it can be observed that 

for both the genetic algorithm and the improved genetic al-

gorithm using sequential quadratic programming, the fitting 

error of the obtained results increases as the random errors 

added to X and Y increase, and the fitting performance be-

comes worse. However, it is also observed that the fitting 

error of the improved genetic algorithm is much smaller than 

that of the genetic algorithm, and the fitting performance is 

significantly improved. Moreover, from the results of multi-

ple fittings, it is found that as the random errors introduced in 

the experiment increase, the change in the X and Y coordi-

nates of the upper and lower surface coordinates of the frus-

tum fitted by the improved genetic algorithm is much smaller 

than that of the genetic algorithm. 
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Table 5. Random errors of genetic algorithm. 

Q X1 Y1 R1 X2 Y2 R2 ANS 

1mm -1.5609 1.7677 99.9794 -1.3074 2.3328 50.2272 1.3722 

3mm 1.3887 0.0519 99.3735 -14.6245 -1.7772 51.5124 3.3427 

5mm -1.3799 -8.5345 100.6289 2.6409 3.7319 49.4890 3.4162 

Table 6. Random errors of improved genetic algorithm. 

Q X1 Y1 R1 X2 Y2 R2 ANS 

1mm -0.1489 0.1644 99.9508 0.0294 0.0645 49.9980 0.4199 

3mm 0.1994 -0.0431 100.0348 0.1332 0.2440 50.2905 1.2302 

5mm 0.6580 -1.1303 99.7183 -1.7397 -0.2109 49.5453 2.1156 

 

From Table 7, the improved genetic algorithm signifi-

cantly outperforms the genetic algorithm in terms of fitting 

accuracy. Although the deviation caused by random errors is 

unavoidable, the error of the improved genetic algorithm is 

less than 3 when the random error is no greater than 5mm. 

Therefore, given the application of genetic algorithms, this 

improved algorithm can still be used effectively. The specific 

effectiveness is demonstrated in Figure 5 and Figure 6. 

 
Figure 5. Centerline fitting of top and bottom circles under random error. 
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Table 7. Accuracy of improved genetic algorithm under random error. 

Q K VAL ANS 

1mm 11 31.4123 0.4199 

3mm 11 328.5819 1.2302 

5mm 11 729.7239 2.1156 

 

 
Figure 6. Centerline fitting under random error. 

Simulation results of the algorithm under gross error: 

From Table 8 and Table 9, it can be observed that when 

gross errors of 2%, 4%, and 6% of the total point cloud are 

added, the genetic algorithm's fitting accuracy of the upper 

and lower surface coordinates and the fitting performance 

decreases with the increase of the gross error proportion. The 

fitting performance drops significantly at around 6%, and the 

difference between the coordinates of the upper and lower 

surface and the input value becomes significant. Therefore, 

the genetic algorithm can only be used when the proportion 

of gross errors added is not more than about 3%. 

For the improved genetic algorithm using sequential 

quadratic programming, the coordinates of the upper and 

lower surface and the fitting error remain relatively stable, 

even when the proportion of gross errors added increases. 

Although both and improved genetic algorithms cannot 

completely avoid an increase in error with increasing gross 

errors, the improved genetic algorithm produces a better fit-

ting performance and can tolerate a higher proportion of 

gross errors compared to the genetic algorithm. It has some 

resistance to gross errors in the point cloud data, making it 

more robust in practical applications. 

Table 8. Gross errors in genetic algorithm. 

W X1 Y1 R1 X2 Y2 R2 ANS 

2% -1.1139 -3.1750 100.1714 2.7430 -1.3544 49.9823 1.7395 

4% 0.2567 2.6333 99.6372 -10.7467 -8.8703 50.7028 3.5515 

6% 39.5872 -1.2449 97.1781 -72.2938 -1.4992 69.8942 12.9626 

Table 9. Gross errors in improved genetic algorithm. 

W X1 Y1 R1 X2 Y2 R2 ANS 

2% 0.5477 0.1255 100.1738 -0.0216 0.0211 50.0059 0.9159 

4% 0.1679 0.2075 100.2243 0.2074 0.2959 49.2169 1.3214 

6% 0.4990 -0.7683 99.1017 0.0161 1.2245 50.9122 1.5069 
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As shown in Table 10, the addition of gross errors has a 

certain impact on the accuracy and error of the improved 

genetic algorithm using sequential quadratic programming. 

However, its fitting error is much smaller than that of the 

genetic algorithm, even after the addition of gross errors. 

Therefore, the improved genetic algorithm is still effective 

and has a certain resistance to interference from gross errors. 

The effectiveness of the improved algorithm is further il-

lustrated in Figure 7 and Figure 8, which show the fitting 

results of the frustum using the genetic algorithm and the 

improved genetic algorithm under the influence of gross er-

rors, respectively. The figures demonstrate that the improved 

genetic algorithm still produces a much better fit than the 

genetic algorithm, with lower error and improved stability, 

even in the presence of gross errors. 

Table 10. Accuracy of improved genetic algorithm under gross error. 

W K VAL ANS 

2% 10 132.0368 0.9159 

4% 11 368.7035 1.3214 

6% 11 549.4276 1.5069 

 

 
Figure 7. Centerline fitting of top and bottom circles under gross error. 

 
Figure 8. Centerline fitting under gross error. 
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Simulation results of the algorithm under data loss: 

In this experiment, only the positive Y-axis will be selected as the initial point cloud data population, as shown in Figure 9 

below: 

 
Figure 9. Schematic diagram of bottom section point cloud. 

When half of the point cloud data is removed and random errors are introduced, the resulting data will be as follows: 

Table 11. Simulation results of improved genetic algorithm under random error in comprehensive point clouds. 

Q X1 Y1 R1 X2 Y2 R2 ANS 

1mm -0.1489 0.1644 99.9508 0.0294 0.0645 49.9980 0.4199 

3mm 0.1994 -0.0431 100.0348 0.1332 0.2440 50.2905 1.2302 

5mm 0.6580 -1.1303 99.7183 -1.7397 -0.2109 49.5453 2.1156 

Table 12. Simulation results of improved genetic algorithm under random error in half-space point clouds. 

Q X1 Y1 R1 X2 Y2 R2 ANS 

1mm 0.1151 0.1845 99.8847 0.0314 -0.0214 50.2065 0.4185 

3mm 0.4911 -0.8037 101.2339 -0.4183 0.8884 48.5907 1.2615 

5mm 0.1104 1.9355 99.1000 0.3221 -6.1120 54.8055 2.1105 

 

Table 11 and Table 12 show that using the improved ge-

netic algorithm to experiment with comprehensive and half 

point clouds results is almost no change in the point error. 

Based on the data collected and the generated fitting images, 

when the entire surface of the object cannot be observed, the 

impact of using the genetic algorithm with the sequence 

quadratic programming algorithm added is very small. The 

influence of incomplete observation can be ignored for both 
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traditional and improved genetic algorithms. Both algorithms 

can adapt well to the situation where the point cloud distri-

bution on the surface is not comprehensive. The specific 

fitting effect is shown in Figure 10 and Figure 11. 

 
Figure 10. Centerline fitting of top and bottom circles under data loss. 

 
Figure 11. Centerline fitting under data loss. 

Simulation results of the algorithm under centerline offset 

In this experiment, the X-axis coordinate of the centerline 

of the rod is offset by 150. That is, the coordinates of the 

upper surface of the true frustum are (150, 0, 1000), and the 

centerline coordinate of the lower surface is (150, 0, 0). 

Then, it is judged whether the improved genetic algorithm 
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can obtain a good fitting effect with the centerline obtained 

from the experiment after the centerline is offset, and the 

influence of the centerline offset on the algorithm is evalu-

ated. 

Table 13. Algorithm simulation results under centerline offset. 

 the value of input genetic algorithm improved genetic algorithm 

X1 150.0000 150.7459 150.0000 

Y1 0.0000 -2.2817 -0.0000 

R1 100.0000 99.8501 100.0000 

X2 150.0000 150.2318 150.0000 

Y2 0.0000 -4.0029 0.0000 

R2 50.0000 51.4718 50.0000 

 

Table 14. Accuracy of improved genetic algorithm under centerline 

offset. 

K VAL ANS 

11 5.4170e-15 4.1635e-09 

Table 13 and Table 14 show that when the centerline is 

offset, the improved genetic algorithm can still locate the 

position of the centerline, while the results obtained by using 

the genetic algorithm will have some deviation. 

When the improved genetic algorithm is used to handle 

the situation of centerline offset, it can still perfectly fit the 

position of the centerline and suppress the fluctuation of the 

genetic algorithm, making the results more stable. Addition-

ally, the precision of the results obtained with the improved 

genetic algorithm is high enough, and the point error is much 

smaller than that of the genetic algorithm, which demon-

strates the superiority of the improved genetic algorithm. The 

specific effect is shown in Figure 12 and Figure 13. 

 
Figure 12. Centerline fitting of top and bottom circles under centerline offset. 
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Figure 13. Centerline fitting under centerline offset. 

4. Conclusion and Discussion 

This paper grasps the basic theory of genetic algorithms 

and incorporates Sequential Quadratic Programming (SQP) 

into genetic algorithms. The objective function of SQP can-

not directly adopt the objective function of the genetic algo-

rithm. Therefore, a sparse screening of the genetic algo-

rithm's objective function is needed to serve as the SQP al-

gorithm's objective function, with the genetic algorithm's 

results used as the initial values for solving SQP. 

By comparing the results data of genetic algorithm and 

improved genetic algorithm, it is found that the results ob-

tained by genetic algorithms have fluctuations, oscillating 

around input values and failing to precisely reach the correct 

input values. In contrast, the results obtained by the im-

proved genetic algorithm are stable and consistent with the 

central coordinates of the upper and lower surfaces of the 

input values. Consequently, it can be concluded that the SQP 

algorithm has a suppressive effect on the fluctuations of ge-

netic algorithms, making the results fit better with the initial 

data and achieving higher precision. 

By introducing point position errors, the data obtained can 

be used to analyze the impacts of random errors, gross errors, 

incomplete point cloud observations, and centerline devia-

tions on genetic algorithms. The improved genetic algorithm 

has higher accuracy and a certain level of resistance to ran-

dom errors, gross errors, incomplete point cloud observations, 

and centerline deviations. Its resistance is superior to that of 

genetic algorithms. 

However, the hybrid optimization algorithm formed by the 

combination of genetic algorithms and SQP still has its 

shortcomings. Under normal point cloud conditions, the ob-

tained results are consistent with the output values, but it still 

cannot completely avoid the influence of error factors such 

as random errors, gross errors, and incomplete observations 

on the algorithm. When the accumulated error factors reach a 

certain level, the results obtained cannot be used. At the 

same time, due to the limitations of the equipment, Inability 

to process and output large-scale data results in computa-

tional limitations. 
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SQP Sequential Quadratic Programming 

GA Genetic Algorithm  
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